Math Textbook (Work in Progress)

by John Della Rosa

First Order System of Equations

Pre-requisite Linear Algebra

Determinants

Determinants are scalar values associated with square matrices, and they provide essential information about the matrix and the linear system it represents. The determinant of a matrix A is denoted as det(A).

2x2 Case

$$\text{det}\begin{bmatrix} a &b \\ c & d \end{bmatrix}=ad-bc$$

3x3 Case

$$\begin{bmatrix} a &b &c\\ d & e &f\\ g & h &i \end{bmatrix}=a(ei-fh)-b(di-fg)+c(dh-eg)$$

Introduction

Definition

A system of n first-order linear differential equations can be written as $$x_1'=a_{1,1}x_1+a_{1,2}x_2+\dots +a_{1,n}x_n$$ $$x_2'=a_{2,1}x_1+a_{2,2}x_2+\dots+a_{2,n}x_n$$ $$\dots$$ $$x_n'=a_{n,1}x_1+a_{n,2}x_2+\dots+a_{n,n}x_n$$ Represented as a matrix as $$\mathbf{X}'=A\mathbf{X}$$ The solutions can be found through solving for the eigenvalues and eigenvectors of the matrix. The eigenvalue is a real or complex number and an eigenvector is a vector such that $$Av=\lambda v$$

Analytical Solution

Finding Eigenvalues

The eigenvalues can be found by solving $$\text{det}(A-\lambda I)=0$$ where det is the determinant, A is the coefficient matrix, \(\lambda\) is the eigenvalue, and I is the appropriately sized Identity matrix.

Finding Eigenvectors

Solve for $$(A-\lambda I)v=0$$ This can be done by Gaussian elimination.

Constructing General Solution

The general solution is given by $$\mathbf{X}(t)=\sum c_ie^{\lambda_i t}v_i$$

Example

Problem

$$x_1'=2x_1+3x_2$$ $$x_2'=5x_1+4x_2$$

Finding Eigenavlues

$$A=\begin{bmatrix} 2 & 3\\ 5 &4 \end{bmatrix}$$ $$\text{det}(A-\lambda I)=0$$ $$\text{det}\begin{bmatrix} 2-\lambda & 3\\ 5 &4-\lambda \end{bmatrix}=0$$ $$(\lambda-2)(\lambda-4)-15=\lambda^2-6\lambda-7$$ $$(\lambda-7)(\lambda+1)=0$$ $$\lambda_1=7$$ $$\lambda_2=-1$$

Computing Eigenvectors

Lambda = 7
$$\begin{bmatrix} 2-7 & 3\\ 5 &4-7 \end{bmatrix} \begin{bmatrix} v_{1,1}\\ v_{1,2} \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\begin{bmatrix} -5 & 3\\ 5 &-3 \end{bmatrix} \begin{bmatrix} v_{1,1}\\ v_{1,2} \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$-5v_{1,1}+3v_{1,2}=0$$ $$v_{1,1}=\frac{3}{5}v_{1,2}$$ $$v_1=\begin{bmatrix} 3\\ 5 \end{bmatrix}$$
Lambda = -1
$$\begin{bmatrix} 2+1 & 3\\ 5 &4+1 \end{bmatrix} \begin{bmatrix} v_{2,1}\\ v_{2,2} \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$\begin{bmatrix} 3 & 3\\ 5 &5 \end{bmatrix} \begin{bmatrix} v_{2,1}\\ v_{2,2} \end{bmatrix}=\begin{bmatrix} 0\\ 0 \end{bmatrix}$$ $$v_{2,1}+v_{2,2}=0$$ $$v_{2,1}=-v_{2,2}$$ $$v_2=\begin{bmatrix} 1\\ -1 \end{bmatrix}$$

Solution

$$\mathbf{X}=c_1\begin{bmatrix} 3\\ 5 \end{bmatrix}e^{7t}+c_2\begin{bmatrix} 1\\ -1 \end{bmatrix}e^{-t}$$

Exercises

  1. Calculate the determinant for the following matrices:
    1. \(\begin{bmatrix} 1 &4 \\ 2 & 3 \end{bmatrix}\)
    2. \(\begin{bmatrix} 0&2 \\ 1 & 3 \end{bmatrix}\)
  2. Solve the following system of equations: $$x_1'=2x_1+x_2$$ $$x_2'=3x_1+4x_2$$
  3. Solve the following system of equations: $$x_1'=2x_1+1x_2$$ $$x_2'=3x_1$$
  4. Solve the following system of equations: $$x_1'=x_1-x_2$$ $$x_2'=2x_1-x_2$$
  5. Solve the following system of equations: $$x_1'=2x_1-x_3$$ $$x_2'=2x_2-x_3$$ $$x_3'=-x_1+2x_2+2x_3$$